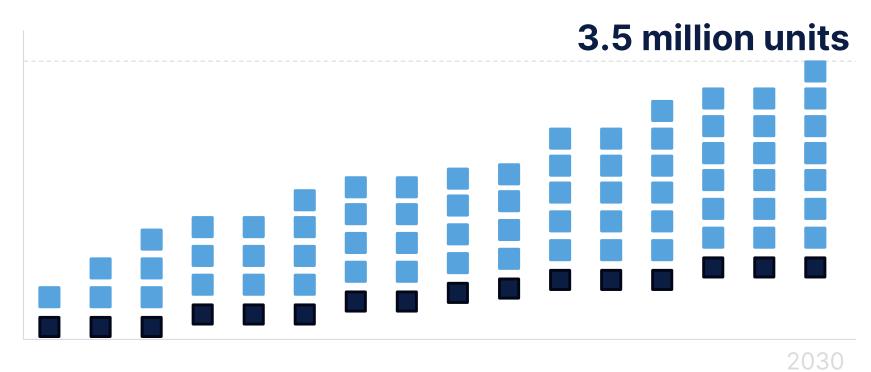


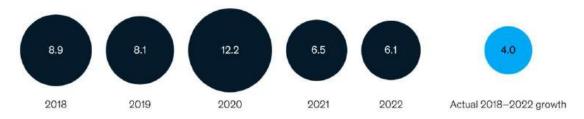
Making Sustainability Affordable



Serotiny Group

3.5 million units

Project-by-project delivery


Housing at scale

How to scale housing?

How to scale affordable housing? high-quality sustainable beautiful

The North American modular construction sector is not achieving its ambitious growth plans.

Comparing 5-year forecasts for the North America modular construction market, 5-year CAGR, %

Source: Mordor Intelligence Inc 2018–2020, Inkwood Analytics 2021, Markets and Markets research 2022

McKinsey & Company

move away from ...

Project Driven Delivery

Architecture

Design for Construction

Equipment & crews coordination

Onsite (actual construction)

Architecture

Design for

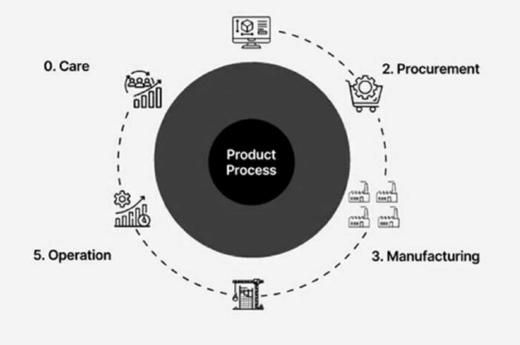
Construction

Equipment & crews coordination

Onsite (actual construction)

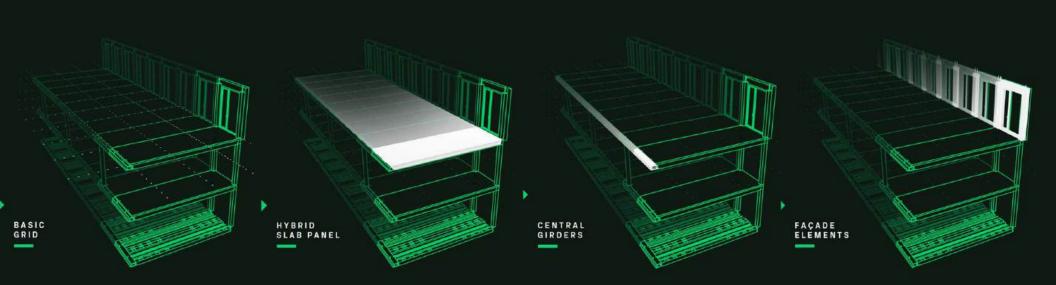
Architecture

Design for Construction


Equipment & crews coordination

Onsite (actual construction)

1. Design & Engineering



4. Assembly

https://vimeo.com/1007092196/1a4ffa832d?share=copy

https://www.youtube.com/watch?v=1Y8ns2Hw9XM

CREE is a Building solution

Structure

Envelope

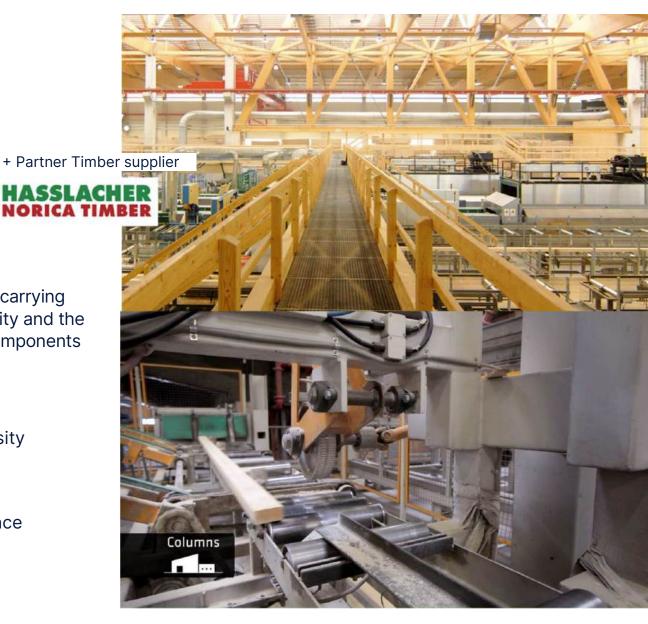
MEP

Program

Benefits over Mass Timber Construction

- → Flexible design with no internal columns
- → Higher acoustic and fire rating
- → Standardized **connection details**
- → Integrated cooling and heating in hybrid slab
- → Lighter structure
- → Under **EMTC** Timber encapsulation requirement
- → Secured supply chain for Glulam
- → **Distributed** manufacturing closed to the project
- → Manufactured by majority **non-skilled labor**
- → Faster installation compared to MTC
- → Minimum MTC waterproofing during installation
- → Lower general construction **insurance premium**

Flexible Efficient Panelized System


Panelized system offers flexibility in design, procurement, and assembly. It can be assembled in dense urban areas and adapted to different site conditions. Its distributed manufacturing allows for local procurement, customization, and efficient construction.

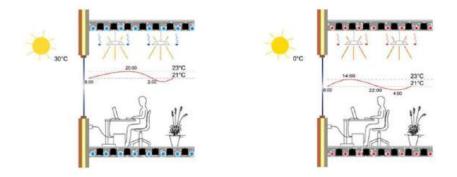
Resilient Supply Chain

through standard products

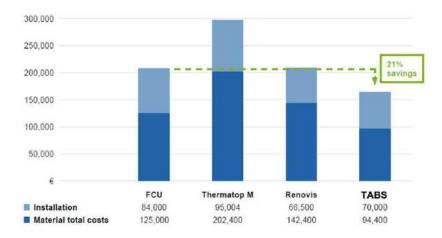
Glued laminated timber is characterized by high load-carrying capacity, dimensional stability and the ability to form the timber components into almost any shape.

- •Large span lengths
- •High load-carrying capacity with low density
- •High dimensional stability due to gluing
- •Fast and dry construction method
- •Can be worked with simple tools
- •High fire resistance and chemical resistance
- •High thermal insulation properties

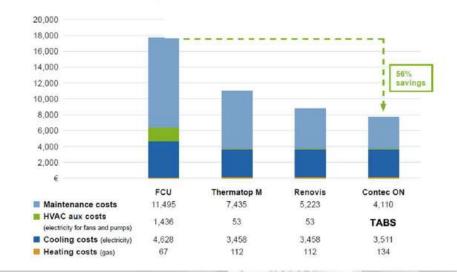
Distributed Manufacturing


Agile and resilient network of distributed microfactories located close to the construction site are structured to deliver standard components to multiple assemblies. In contrast to volumetric modular factories, which focus on mass production, micro-factories are structured to deliver mass customization through standard components.

ising



Thermally Activated Building Systems


The primary focus of control strategies for TABS is to ensure optimal comfort while minimizing energy usage.

Initial investment costs

* Initial investment costs of the selected system

Annual running costs Ca,i

Key Savings

IN THE NE IS

21% Lower initial cost 42% Carbon emission reduction

59% Lower lifecycle cost 56% Lower annual operation cost

Benefits of Integrated System

- High energy efficiency
- Faster construction/ installation
- Prefabrication allows for Standardization
- Prefabrication allows for cost efficiency
- Lower O&M
- Higher lifecycle
- Little fluctuation in comfort temperatures
- Good thermal comfort for users
- Faster response time /less than 30 minutes
- More Flexibility in interior layout

Optimized Logistics

Storage and transportation

Lighter and more compact panels facilitate smoother transportation to construction sites, offering an estimated 30% reduction in transport costs vs larger-sized volumetric modules.

Chart 1 visualizes the production process of project example

Panelized Assembly

In contrast to transportation size limitations of volumetric modular systems, our panelized system is customizable to various configurations, types of projects, and site constraints. On average, a slab can be assembled by just five on-site workers in 15 minutes, while the installation of the CREE envelope takes approximately 30 minutes.

Rapid Assembly

Faster assembly of approximately 500m2 of enclosed, weatherproof floor space daily, five-times quicker than concrete construction, with 50-70% fewer on-site workers.

The efficient integration of envelope with structure allows each floor to be fully enclosed and waterproofed, enabling concurrent interior finishing during the assembly process. As a result, the overall construction time is significantly reduced.

Benefits of the system

01 | HIGHLY SUSTAINABLE AND RESOURCE-EFFICIENT

The CREE timber-hybrid system is inherently sustainable, uses less materials and incorporates renewable resources where possible.

02 | QUALITY, SCHEDULE, AND COST CERTAINTY

Cost and schedule predictability are ensured early on. As the project progresses, all project participants can view planning changes in real time using the digital twin. This allows for a high standard of quality, utmost efficiency, and rapid estimation of costs, time, carbon footprint, and regulatory compliance.

03 | 400-500 M² OF ENCLOSED FLOOR SPACE PER DAY

The use of completely prefabricated and modular components makes it possible to construct 400–500 m^o of enclosed, weatherproof floor space with 6 workers per day - roughly five times the pace of conventional on-site concrete construction.

04 | FREEDOM OF INTERIOR AND FACADE DESIGN

The CREE System offers an extraordinary degree of versatility. Interior spaces are highly customizable because there is no need for load-bearing interior walls. Architects are therefore free to create floorspaces with outstanding form and functionality.

08 | REDUCED LIFE-CYCLE COST

The life-cycle cost of a CREE building is remarkably low. Smart heating, cooling, and lighting systems, along with passive design strategies, allow for significantly lower energy consumption.

05 | OFF-SITE PRODUCTION IMPROVES ACCURACY AND QUALITY

Our innovative method of prefabricated slab and wall elements boosts labor productivity. Crucially, the building is assembled on-site, rather than constructed. The lightness of the timberhybrid composite and the high level of prefabrication provide further boosts to in-time transportation and delivery.

D6 | HIGHER PRODUCTIVITY WITH FEWER WORKERS

All core and shell components are prefabricated at off-site facilities, allowing for better health, hygiene, and safety monitoring on building sites. For workers, this means less-populated and inherently safer sites.

07 | HEALTHY INDOOR ENVIRONMENT

End users appreciate the biophilic atmosphere provided by the exposed wood elements and open functional spaces characteristic of a healthy office building. The natural feel of the interiors of a CREE building contribute to a healthy working or living environment.

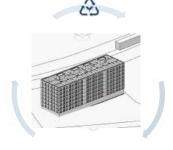
E

development model, integrating holistic sustainability strategies with long-term affordable rental housing and prefab hybrid heavy timber construction. It emphasizes larger family-style units, future adaptability, and community-mindedness, and will be the first Toronto Green Standard Tier 4 ITGS4 in nearnet-zero hybrid mass timber development in Toronto. 1925 Victoria Park is developed from a life cycle costing assessment, understanding that long-term operational costs would outweigh initial construction investment. This strategy aims to create long-term value for our client while enabling a more robust and resilient architecture capable of adapting to changes in demographics and use over time. The building form takes its cues from the perimeter block, using a single-loaded corridor around an outdoor courtyard amenity space. This typology lends itself to achieving TGS4 with natural daylighting to all areas of suites and passive cross-ventilation and cooling. The result is an 11 story building constructed of a modular mass-timber system with single-loaded courtyard. The building mass was derived from a modular prefab system on a 3m x 3m grid. 1925 Victoria Park will be a model and a catalyst for future responsible development that prioritizes sustainability and thoughtful design while creating much-needed rapid, affordable

Toronto's most sustainable development

1st near-net-zero private residence	1st CREE Pilot Project in Ontario	1 ST 12 story EMTC
8 M Design engineering	4 M On-site assembly	12 M faster occupancy
185 long-term rental AOD compliant units	100 Radiant cooling and heating	340 Monthly utility cost for each unit
46 More Efficient Than NECB standard	32 less embodied carbon	68 less operation and maintenance cost

Product-driven delivery for affordable housing


Reuse not rework Design once, build many times over

Reena Affordable Housing Prototypes

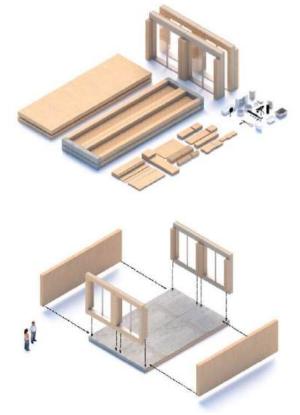
Configurable Hybrid-Timber Building System

Reena "Tower" Building Prototype

Reena "Bar" Building Prototype

Each prototype evaluates:

- Design to Reena's Housing Model
- Optimized Energy & Operations
- Costing Engineering
- Assembly & Site Logistics
- Procurement & Manufacturing
- Proforma Viability & Affordability Mix


Product-driven delivery

1. Standardized building product across multiple sites

Faster Evaluation Steady Pipeline

Cost Certainty Reduced Equity Requirement Long Term Affordability & Sustainability

STUDIO 22 m²

. Ŧ

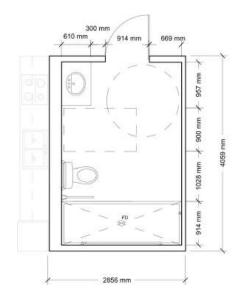
†**†**†

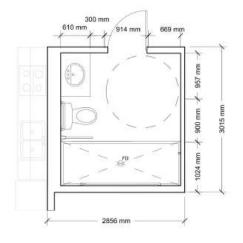
2 BEDROOM 90 m²

†**††**i

3 BEDROOM 90 m²

STUDIO 45 m²



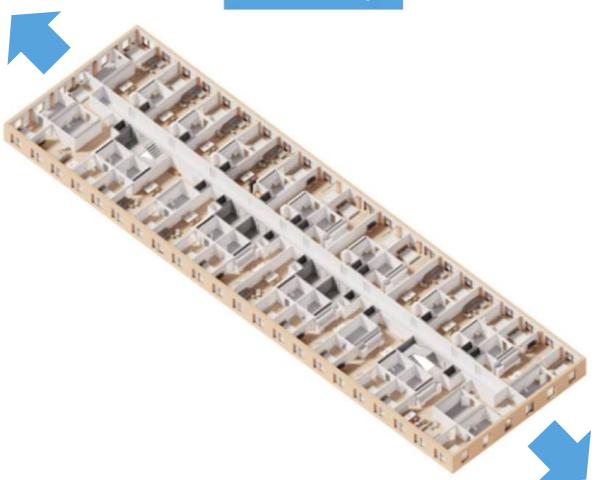


0BD-1BA-01 475 SF

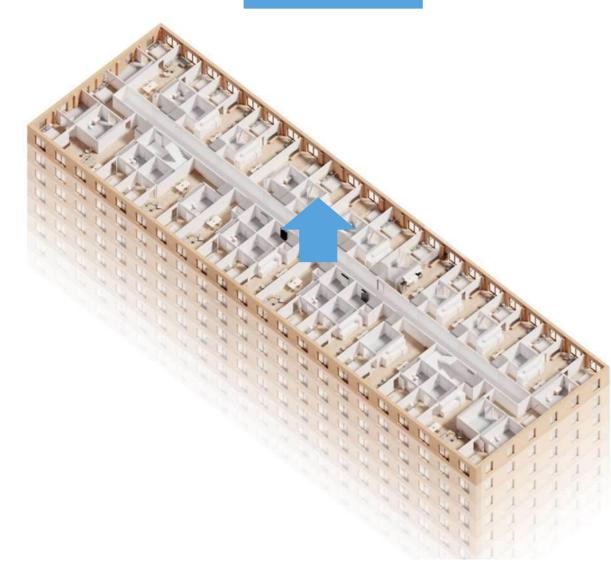
2BD-2BA-01 950 SF Case Study

1BD-1BA-01 634 SF

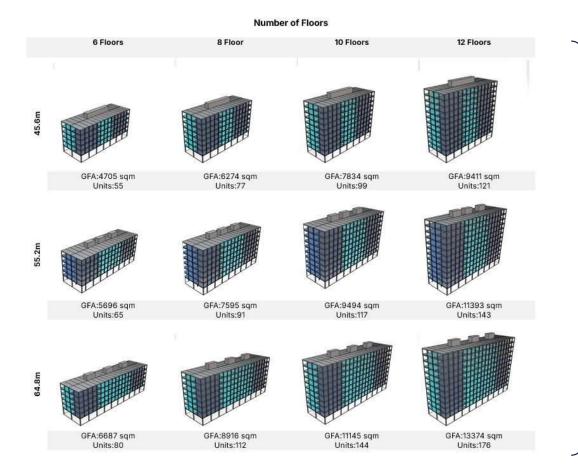
2BD-2BA-02 990 SF



1BD-1BA-02 599 SF



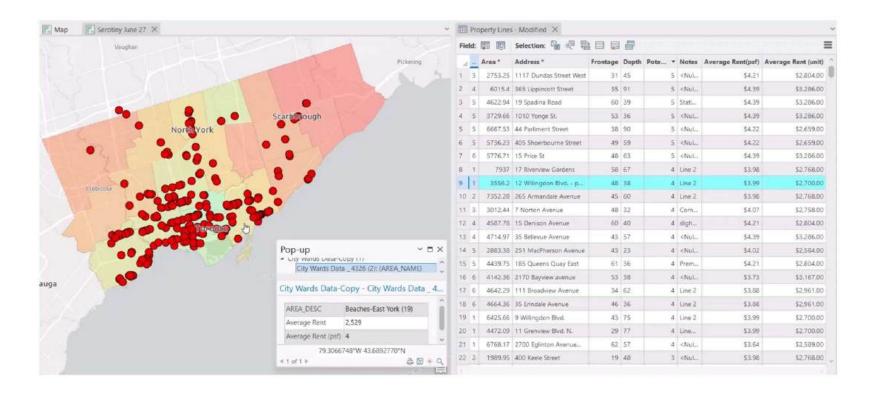
3B-3BA-01 1,415 SF



KPIs

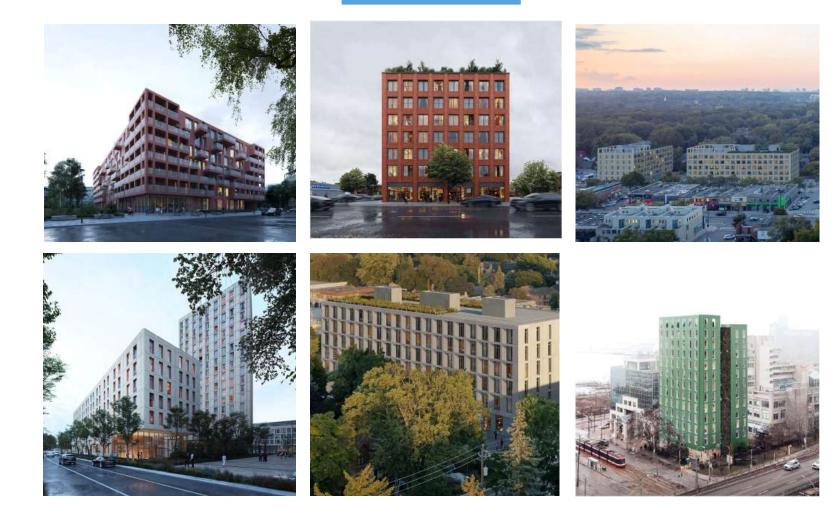
- Construction Costs
- Development Costs
- Affordability Levels
- Revenue
- Operational Costs
- Energy Savings

Product-driven delivery

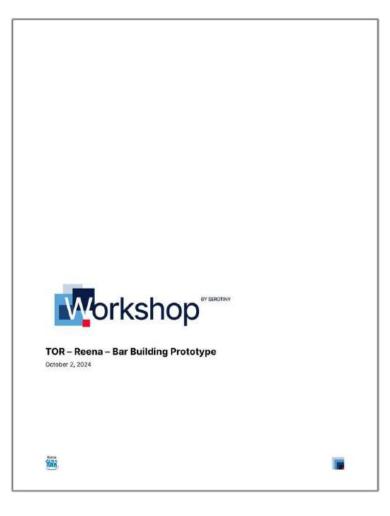

2. Faster and more robust feasibility and viability

Faster Evaluation Steady Pipeline

Cost Certainty Reduced Equity Requirement Long Term Affordability & Sustainability



Case Study



Case Study

Case Study

Workshops are ideal launchpads for fostering a collaborative project development. They provide us with the opportunity to directly connect with clients and gain a deep understanding of their business objectives and project requirements.

Through the course of 5 weeks we test-fit the system through various design scenarios, cost engineering, and development pro forma. The primary objective is to create a comprehensive design and delivery roadmaps that empower you to make well-informed decisions from the outset, saving you unnecessary expenses on various consultants.

5 Weekly Steps

Week 1: Massing and Structure

Workshop on the super structural system

- → Massing optimization
- → Site Configuration
- → Create Massing options
- → Massing Scenario Testing, set back
- → Modular Grid optimization
- → Preliminary FE structural analysis and sizing of members for costing

Week 2: Program and Building System

Workshop on the CREE MEP system

- → Create Unit Mix options
- → Develop floor plate layouts
- → Design scenarios for opening, energy efficiency
- → Standardize interfaces for MEP and building envelope
- → Design MEP strategy for estimation
- → Standardize prefabricated in-slab radiant heating and cooling system (TABs)

Week 3: Envelope and Energy Performance Workshop on the CREE Prefab Envelope System

- → Set the window wall ratio (WWR)
- → Review strategies and specifications for rainscreen cladding systems
- → Create a strategy for balcony systems (e.g. juliette)
- → Benchmark energy performance requirements

Week 4: DFMA

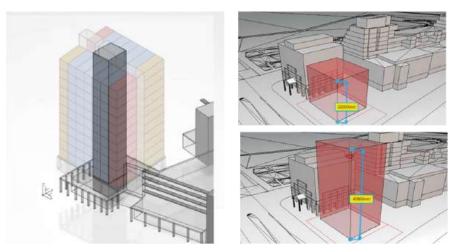
Workshop on the Slab & envelope manufacturing and assembly

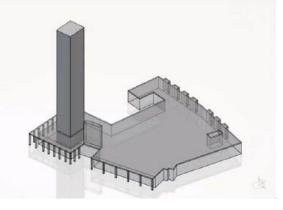
- → Manufacturing detailed Model (EBOM)
- → Manufacturing cost and schedule
- → On-site Assembly cost and schedule

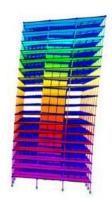
Week 5: Cost Engineering and Proforma

Workshop on the project hard and sustainability opportunities and green incentives

- → Project life cycle assessment
- → Project cost estimation
- → Building Energy consumption (O&M)
- → Life cycle costing assessment
- → Create development roadmap for next phase
- → Analyze project financing through market rent
- \rightarrow Create a roadmap for project financing , through incentives, alternative financing

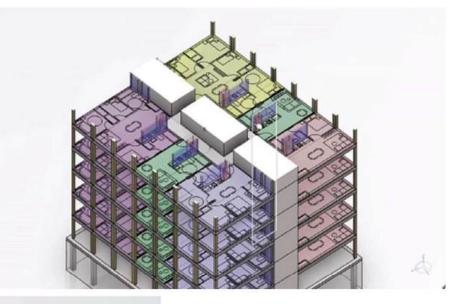



We begin with site-agnostic approach to the massing focusing on standardization of modular grid, while evaluating the logistic and assembly approach early on.


- → Evaluate massing scenarios against zoning, shadow, and setback requirements to assess opportunities for additional density
- → Configure site layout to simplify site logistics and speed up assembly
- → Test-fit modular grid
- → Optimize the grid for reuse components across the entire development

Second, we evaluate structural frameworks. Through multiple design scenarios with FE analysis, we test and optimize the lateral and Gravity loads to determine the sizing of structural members.

- → Evaluate structural layouts and frameworks to minimize material use and load transfers
- → Optimize lateral and gravity loads through iterative FE analysis and alternate design scenarios
- → Determine sizes of GLM columns & beams, steel columns & beams, shear walls, and cores to assist with costing and procurement strategies

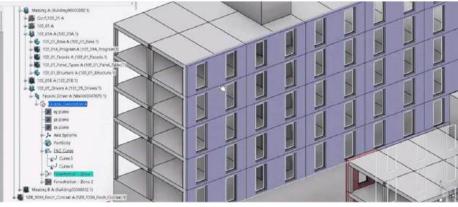

02 Programs and Building Systems to maximize reuse and increase efficiency

Mechanical system is integrated and optimized with our interior units and modular structural grid, this reduces the rework, clashes to reduce unnecessary waste and reducing the cost of the project, while increasing the system efficiency.

- → Standardize distribution system with prefabricated MEP rises to reduce slab complexity, create repetition, & reduce cost
- → Develop MEP strategy for estimation using a library of prefabricated MEP assemblies
- → Standardize prefabricated in-slab radiant heating and cooling system (TABs) to reduce production costs, increase speed of assembly and system commissioning

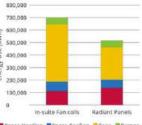
Our system offers a column free and open floor for flexible programming. allowing flexible configuration .Standardized MEP products, interfaces, optimized initial and operational cost. These products are integrated and optimized for with the unit layout, modular system and GLM structures .

- → Develop floor plate layouts to maximize system compatibility and floor plate efficiency.
- → Leverage a library of standard suites to quickly assess viability of building layouts
- → Standardized interfaces for MEP and building envelope to allow for high level of prefabrication.


03 Envelope and Energy Performance

We create a façade strategy, including massing penalization, fenestration, and material systems, focusing on maximizing performance, cost benchmarks, and visual quality.

- the window-to-wall ratio will to be carefully balanced to optimize energy \rightarrow efficiency and occupant comfort.
- High-performance glazing and proper insulation can mitigate heat transfer and \rightarrow improve the overall energy efficiency of the building
- Integrate passive design strategies \rightarrow
- Minimize thermal bridging through standard interface connections for \rightarrow Prefabricated balconies and add on balconies, awnings, and shades.
- Create a strategy for balcony systems (e.g. juliette) \rightarrow

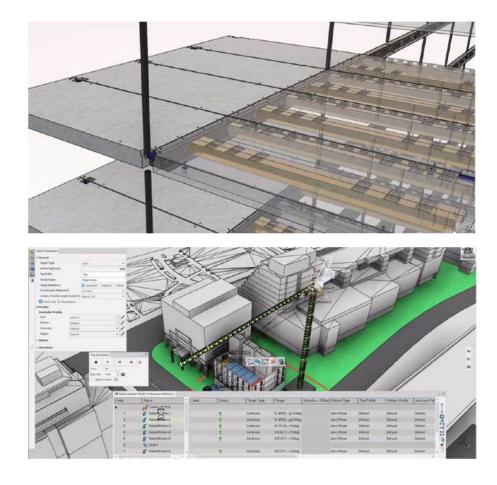

Our energy modeling is parametric and configurable allowing to measure the energy use of the project that inform the

- Costing high performance windows, through our partnership with Schuco \rightarrow
- Set the window wall ratio (WWR) \rightarrow
- Review strategies and specifications for rainscreen cladding systems \rightarrow
- Benchmark energy performance requirements \rightarrow

100, 186, 05 · Continue

Space Heating Space Cooling Sfans Pumps

Unit	Avg. Monthly Conditioning Costs		
Unit	Traditional FCU	Radiant System	
1BD	\$23.10	\$17.08	
28D	\$29.60	\$21.89	
38D	\$42.87	\$31.70	



By utilizing our automated design tool, we are able to rapidly generate detailed manufacturing models that enable the extraction of precise EBOM for parts and sub-assemblies. Leveraging historical production data, we can accurately estimate costs for prefabricated assemblies.

- → Validate design through manufacture-ready models of building components
- → Determine production schedule and storage requirements
- → Create high fidelity budgets and procurement packages for prefabricated components in early design using EBOM/MBOM

Enhance program planning, decision-making, and outcomes by producing activity-based estimates for cost, schedule, and uncertainty. Utilize a TAKT planning integrated framework, combined with validated, predictive models, to establish a standard, repeatable model-based cost engineering process tailored to the organization and the technical solutions being developed.

- → Evaluate site logistics and productivity based on unique site layout and configuration
- → Select hoisting equipment
- → Validate budget and schedule through assembly simulation

05 Cost Engineering and Proforma

We develop defensible, fact-based cost estimates. The Cost Engineering provides the framework, models, and data required for accurate estimates. Cost engineering dynamically links cost, schedule, and uncertainty to technical requirements, including analysis, design, implementation, and verification.

- Iterate costing scenarios using a pricing catalogue of building components
- Evaluate opportunities to reduce manufacturing and assembly costs by optimizing design
- Provide detailed costs matrix from modular components
- Evaluate opportunities to reduce general conditions through resource efficiency and fast assembly

We evaluate market opportunity, test alternative proforma models (e.g. rental, condo, co-living), and leverage green incentives to create highest value development proposals for each site.

- Create a Energy modeling for life cycle assessment and green financing
- Identify suitable Green loans and incentives
- Evaluate opportunities to alternative financing, ie coliving, mixed market rate rental
- Create O&M cost for nonprofit operators
- Create a cashflow analysis for the project

6.1.3

6.4 Pro-Forma Rental

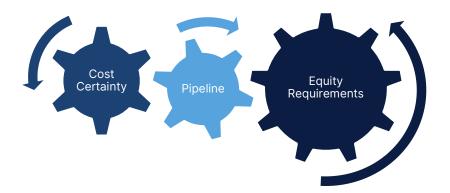
SCENARIO 1 - Mas		SCENARIO 2 - An-et-Right	
and & Development Costs		Land & Development Costs	
	810/32×300	Land	\$1,000,200
urbaijust Piters	21,444,696	Maximum Trees.	4,000,000
get R. Aproximitation	0000.580	Legil & Administration	841.40
ekering S Leverg	\$700,560	Maiumo S Lawing	Broo.mit
and .	81.011,775	Trans	BLEDGAT
netwee	814,154,241	dorumuto/	\$5.011.00
anagement Flore	87,010,088	Managament Pares	\$1,000,027
endroy Presidenty & Deltatory	81.000.000	Security Transition & Datherry	Bart.ac
xeuter Sectors	\$454,898	-boosulant Sett (sents	18001.76
edegete)	84.711-000	Company .	ALATT.AA
All Project Costs	845,104,261	Total Registre Conta	341,200,62
satio at Fands		Source of Fonds	
ice.	1.1	alon .	
m-goomadoox	8,00%	New Ecosity/Inth	8.009
in fine (up	5.02%	New Else-Out	1.009
nationise	-	Destination	-
×	\$2,200,747	80	41,752,08
ement	81:306,194	Parriet	300.38
C Stanger Product	346.07(021	Red. Stirringson Transport	\$34,011,819
11.00 m	800.011	Calificia	\$107,73
uity Replacement	84,407,388	Prysity Parguterment	84.111.76
EVERIE .		Revenue	
in (Takrismi Asset	81.00.46	CVA Interfaced Asset	346.120.86
n Damifikan Italikaningan	41.100.008	Net Dan Flor 1: Devensor	0015,05
etoceanae		Performation	
No o flante	Lim	Return in Magazitur	-1.0
et en Gett	5.9%	Cestion Cesti	444
el-el-datolisi. Honasa Masarintik.	TO.DATIo	Gel-er-Gelvillo, Millord Revenuelle	8.801
on per liter. Cont. Land Vision	6489,2708	Cont per UNY (Coll. Land Velow)	8480,732

CMHC RCFI	
CBHA's vertal conversion intercence prevalent low cost function to -clubtin increases advantage the traves costs phones of produce to execution of or inter approximation framework for theory of the stabilized potential of the traves of the 3000 CBB, and a rearrowment of up to 1000 keV costs to Cost Our resolution takes camponent.	Canadä
This properties benefiterateliked to materi & excered the performance orbitrly to access	CWAC SCILL
 To cover serve investigation and extension of the server of the server to any extension of the server to any extension of the server of the ser	National Housing Strategy
 Percular and executing presental and data when 12 Manthies of realizing affluence group expension 	

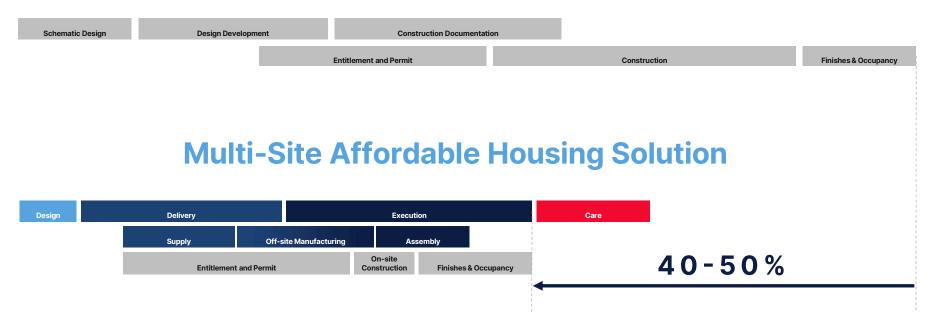
Financial Viability	Energy Efficiency
Bernan of all loar is permitted free hearing and spectrose although one for a second second angeog spectrose statistics the analytic second to have an	Register markets a minimum of this manual boost is any associations workfahl and science that the applicable releases income building cache.
entering and trapposed a nucleony of the Norm probability of this proposed proper fixed as well as reporting to dual with development color and account core runs and datases in temperatures.	 Low the meth-with building-under her K of the Keywood Building Look my dictor attribute a prime un MR improvement aux des 201 MB2
	 All Auditings under Net-Foll die Konstein Aufting Konstein erseit dermet bezugen sinderen die FBS, waaroner auf einer

Product-driven delivery

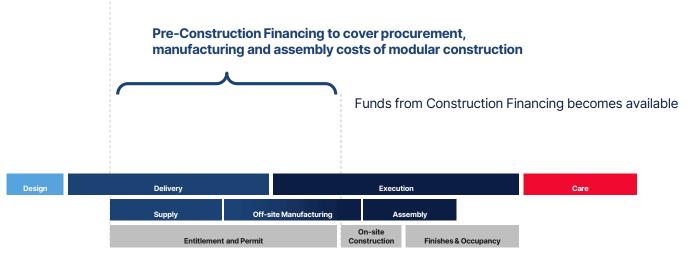
3. Bundle financing of standardized parts across multiple sites


Faster Evaluation Steady Pipeline

Cost Certainty Reduced Equity Requirement Long Term Affordability & Sustainability

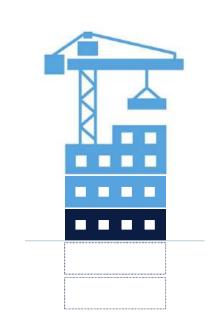

Project funding gap to develop affordable housing at scale

Creating a pipeline of building products to get financing moving



Traditional Construction

Multi-Site Affordable Housing Solution



Decoupling project-based risk

Co-mingled Project-based Risks:

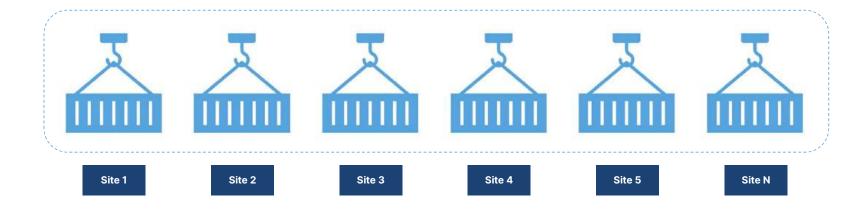
- Market
- Supply Chain
- Project Team
- Regulatory
- Construction

Decoupled Controlled, Non-Project-based Risks:

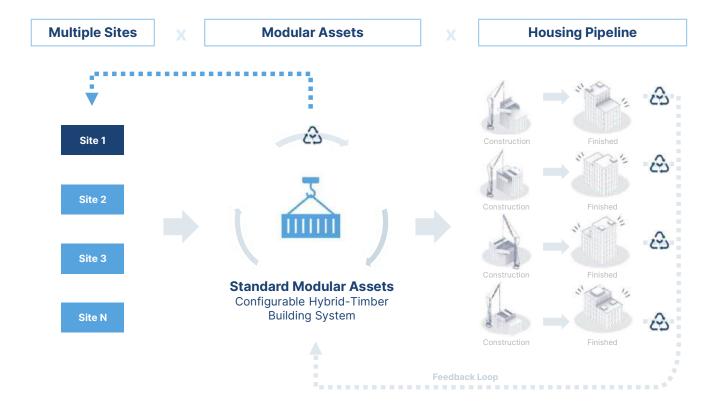
- Standard products
- Manufactured off-site
- Reusable across multiple sites

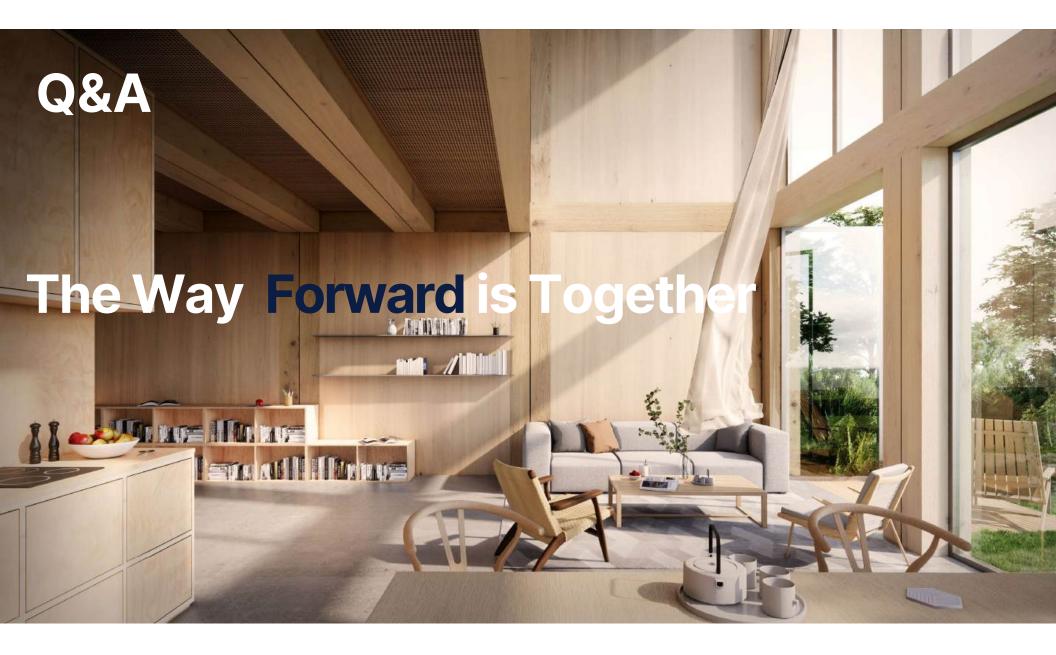
Globally-proven and certified modular system

Investing against modular assets across a portfolio of affordable housing


✓ Environmental

✓ Social


✓ Governance


Bundling the funding needs across multiple sites

© Serotiny Group 2024

All images, ideas, inventions or other information in this document are presented for information purposes only. They may be subject to intellectual property rights held by third parties. No request in connection with this information has been released. Therefore, no use, reproduction, distribution, dissemination or other use of any kind whatsoever of this information is permitted without consent, where applicable, of the holder of property rights. Suppose you are interested in using the information in this document. In that case, you must obtain all property rights directly from the copyright owner for the intended exploitation. This notice applies to sections of this document and any other discovery that we share with not